All - I am having a DQN trainer crash upon training for a custom environment. My trainer config (sans env_config details) is as follows:
DEFAULT_CONFIG = with_common_config({
# === Model ===
# Number of atoms for representing the distribution of return. When
# this is greater than 1, distributional Q-learning is used.
# the discrete supports are bounded by v_min and v_max
"num_atoms": 1,
"v_min": -10.0,
"v_max": 10.0,
# Whether to use noisy network
"noisy": False,
# control the initial value of noisy nets
"sigma0": 0.5,
# Whether to use dueling dqn
"dueling": False, # was true
# Dense-layer setup for each the advantage branch and the value branch
# in a dueling architecture.
"hiddens": [256, 256],
# Whether to use double dqn
"double_q": True,
# N-step Q learning
"n_step": 1,
# === Exploration Settings ===
"exploration_config": {
# The Exploration class to use.
"type": "EpsilonGreedy",
# Config for the Exploration class' constructor:
"initial_epsilon": 1.0,
"final_epsilon": 0.02,
"epsilon_timesteps": 10000, # Timesteps over which to anneal epsilon.
# For soft_q, use:
# "exploration_config" = {
# "type": "SoftQ"
# "temperature": [float, e.g. 1.0]
# }
},
# Switch to greedy actions in evaluation workers.
"evaluation_config": {
"explore": False,
},
# Minimum env steps to optimize for per train call. This value does
# not affect learning, only the length of iterations.
"timesteps_per_iteration": 1000,
# Update the target network every `target_network_update_freq` steps.
"target_network_update_freq": 500,
# === Replay buffer ===
# Size of the replay buffer. Note that if async_updates is set, then
# each worker will have a replay buffer of this size.
"buffer_size": 50000,
# The number of contiguous environment steps to replay at once. This may
# be set to greater than 1 to support recurrent models.
"replay_sequence_length": 1,
# If True prioritized replay buffer will be used.
"prioritized_replay": True,
# Alpha parameter for prioritized replay buffer.
"prioritized_replay_alpha": 0.6,
# Beta parameter for sampling from prioritized replay buffer.
"prioritized_replay_beta": 0.4,
# Final value of beta (by default, we use constant beta=0.4).
"final_prioritized_replay_beta": 0.4,
# Time steps over which the beta parameter is annealed.
"prioritized_replay_beta_annealing_timesteps": 20000,
# Epsilon to add to the TD errors when updating priorities.
"prioritized_replay_eps": 1e-6,
# Whether to LZ4 compress observations
"compress_observations": False,
# Callback to run before learning on a multi-agent batch of experiences.
"before_learn_on_batch": None,
# The intensity with which to update the model (vs collecting samples from
# the env). If None, uses the "natural" value of:
# `train_batch_size` / (`rollout_fragment_length` x `num_workers` x
# `num_envs_per_worker`).
# If provided, will make sure that the ratio between ts inserted into and
# sampled from the buffer matches the given value.
# Example:
# training_intensity=1000.0
# train_batch_size=250 rollout_fragment_length=1
# num_workers=1 (or 0) num_envs_per_worker=1
# -> natural value = 250 / 1 = 250.0
# -> will make sure that replay+train op will be executed 4x as
# often as rollout+insert op (4 * 250 = 1000).
# See: rllib/agents/dqn/dqn.py::calculate_rr_weights for further details.
"training_intensity": None,
# === Optimization ===
# Learning rate for adam optimizer
"lr": 5e-4,
# Learning rate schedule
"lr_schedule": None,
# Adam epsilon hyper parameter
"adam_epsilon": 1e-8,
# If not None, clip gradients during optimization at this value
"grad_clip": 40,
# How many steps of the model to sample before learning starts.
"learning_starts": 1000,
# Update the replay buffer with this many samples at once. Note that
# this setting applies per-worker if num_workers > 1.
"rollout_fragment_length": 4,
# Size of a batch sampled from replay buffer for training. Note that
# if async_updates is set, then each worker returns gradients for a
# batch of this size.
"train_batch_size": 32,
# === Parallelism ===
# Number of workers for collecting samples with. This only makes sense
# to increase if your environment is particularly slow to sample, or if
# you"re using the Async or Ape-X optimizers.
"num_workers": 0,
# Whether to compute priorities on workers.
"worker_side_prioritization": False,
# Prevent iterations from going lower than this time span
"min_iter_time_s": 1,
})
As the above config is from a working example file and trips an assertion in a core package file, I am not sure what the underlying issue is. For what it is worth, the same crash happens when training on a Windows system and a Linux system.