I’m getting the below error when training a model via Rainbow distributed with ape-x
2021-01-03 00:37:15,154 ERROR worker.py:1018 -- Possible unhandled error from worker: ray::LocalReplayBuffer.update_priorities() (pid=49, ip=10.12.125.4)
File "python/ray/_raylet.pyx", line 484, in ray._raylet.execute_task
File "python/ray/_raylet.pyx", line 438, in ray._raylet.execute_task.function_executor
File "/usr/local/lib/python3.7/dist-packages/ray/rllib/execution/replay_buffer.py", line 340, in update_priorities
batch_indexes, new_priorities)
File "/usr/local/lib/python3.7/dist-packages/ray/rllib/execution/replay_buffer.py", line 202, in update_priorities
assert priority > 0
AssertionError
Here is my trainer config
trainer_configs:
adam_epsilon = 0.00015
buffer_size = 150000
double_q = True
dueling = True
evaluation_interval = 1
evaluation_num_episodes = 1
final_prioritized_replay_beta = 1.0
learning_starts = 20000
log_level = 'ERROR'
lr = 0.0001
n_step = 3
noisy = True
num_atoms = 51
num_cpus_for_driver = 4
num_cpus_per_worker = 4
num_gpus = 0
num_workers = 6
prioritized_replay = True
prioritized_replay_alpha = 0.5
prioritized_replay_beta = 0.4
prioritized_replay_beta_annealing_timesteps = 1250550
prioritized_replay_eps = 0.0
rollout_fragment_length = 10
sigma0 = 0.5
target_network_update_freq = 0
timesteps_per_iteration = 83370
train_batch_size = 128
v_max = 5.0
v_min = -5.0
worker_side_prioritization = True
exploration_config:
final_epsilon = 0.0
initial_epsilon = 0.0
type = 'EpsilonGreedy'
optimizer:
debug = False
max_weight_sync_delay = 100
num_replay_buffer_shards = 2
Any idea what setting might be causing this?