- High: It blocks me to complete my task.
Hi, I met some confusing problem.
PPOConfig in as a algorithm that inherits from PGConfig and that inherits from AlgorithmConfig.
Algorithm config has option to set a model to a custom one. So my question is what gives me building code and ray.rllib.algorithms.ppo.ppo.PPOConfig like, if at the end of the implementation of custom model (TorchModelV2, torch.nn.Module) i have to implement value fun, loss fun, etc etc. and at the end i assume its my implementation of ppo, instead of rllib.
config = (PPOConfig()
.rl_module(_enable_rl_module_api = False)
.environment(WeatherEnv,
env_config={
"vision_range": 10,
})
.framework("torch")
.rollouts(num_rollout_workers=0)
.training(
_enable_learner_api = False,
model = {
"custom_model" : "WeatherModel",
"custom_model_config" : {
#"obs_space" : gym.Space(shape=(10,24)),
#"action_space" : Env_env.action_space,
#"num_outputs" : num_layers,
#"model_config" : {},
"device" : "cpu", # potetialy to delete
"hidden_size" : hidden_size,
"input_size" : input_size,
"num_layers" : num_layers,
"dropout_rate" : dropout_rate
},
}
)
)
algo = ppo.PPO(config=config)
Also I dont know what Im doing wrong but
"obs_space" : gym.Space(shape=(10,24))
gives me:
ray/rllib/models/catalog.py:610
--> 610 instance = model_cls(
618 except TypeError as e:
620 if "__init__() got an unexpected " in e.args[0]:
TypeError: WeatherModel.__init__() got multiple values for argument 'obs_space'
WeatherModel.__init__() got multiple values for argument 'obs_space'
Even if it meets the requirements in case of shape(both env and nn model), type
For the rest of the parameters requested in
TorchModelV2.__init__(
self, obs_space, action_space, num_outputs, model_config, name
)
the same situation happens.
if something is unclear, answer anyway and ask.