from ray.rllib.algorithms.ppo import PPOConfig
def initialize_ppo_trainer():
global ppo_trainer
register_env("custom_env", lambda config2: CustomEnv(config2))
# Configure PPO
ppo_config = (
PPOConfig()
.environment("custom_env") # Name of the registered environment
.framework("torch") # Use torch or tf depending on your setup
.rollouts(num_rollout_workers=0, create_env_on_local_worker=True) # Adjust number of workers
.training(
train_batch_size=BATCH_SIZE,
sgd_minibatch_size=min(32, BATCH_SIZE), # Minibatch size <= train batch size
)
.resources(num_gpus=0) # Adjust GPU resources as needed
)
# Build the PPO trainer
ppo_trainer = ppo_config.build()
logger.info("PPO trainer initialized.")
CustomEnv:
class CustomEnv(gym.Env):
“”"
Custom Environment for Incident Response using OpenAI Gym interface.
“”"
metadata = {'render.modes': ['human']}
def __init__(self, config: Dict[str, Any] = None):
super(CustomEnv, self).__init__()
# Define action and observation space
# Actions: Discrete actions corresponding to incident response strategies
self.action_space = spaces.Discrete(len(ACTIONS)) # len(ACTIONS) = 9
# Observation space: 77 continuous features, normalized between 0 and 1
# Adjust the low and high values based on actual data ranges for better normalization
self.observation_space = spaces.Box(
low=0.0,
high=1.0,
shape=(len(STATE_FEATURES),),
dtype=np.float32
)
print(f"CustomEnv Initialized: Observation space - {self.observation_space}, Action space - {self.action_space}")
logger.info(f"CustomEnv Initialized: Observation space - {self.observation_space}, Action space - {self.action_space}")
# Initialize state
self.state = self.reset()
# Optional: Define additional parameters from config if needed
if config is not None:
self.config = config
else:
self.config = {}
ValueError: observation_space
not provided in PolicySpec for default_policy and env does not have an observation space OR no spaces received from other workers’ env(s) OR no observation_space
specified in config!