Using LSTM for custom model

Hay,
I’m training a custom model using RLlib 3.5.0. The structure is like this:

class GATPolicyModelLSTM(TorchModelV2, nn.Module):
    def __init__(self, obs_space, action_space, num_outputs, model_config, name):
        TorchModelV2.__init__(self, obs_space, action_space, num_outputs, model_config, name)
        nn.Module.__init__(self)
...
    def forward(self, input_dict, state, seq_lens):
...
        return logits, state

Using this code:

config = ({
    "env": "custom_env",
    "env_config": env_config,
    "framework": "torch",
    "num_gpus": 1,
    "num_workers": 5,
    "sample_async": True,
    "multiagent": {
        "policies": {
            "shared_policy": (None, obs_space, act_space, {}),
        },
        "policy_mapping_fn": policy_mapping_fn,
    },
    "model": {
        "custom_model": "stm_policy_model",
        "custom_model_config": {
            "use_lstm": True,
            "max_seq_len": 20,
            "lstm_cell_size": 256,
        },
    },
    "lr": 5e-5,
    "rollout_fragment_length": 'auto',
    "train_batch_size": 4000,
    "sgd_minibatch_size": 128,
    "num_sgd_iter": 10,
    "grad_clip": 0.5,
    "clip_param": 0.2,
    "entropy_coeff": 0.01,
    "entropy_coeff_schedule": [
        [0, 0.2],      # At iteration 0, entropy_coeff = 0.1
        [2500000, 0.01],   # At iteration 250, entropy_coeff = 0.01
    ],
    "lambda": 0.95,
    "vf_clip_param": 10.0,
    "batch_mode": "truncate_episodes",
    "log_level": "DEBUG", 
    "log_sys_usage": False,
    "local_mode": True,
})

algo = ppo.PPO(env="custom_env", config=config)

But I’m receiving errors while using build-in LSTM.
Is there any template code that can guide me how could I use the LSTM wrapper in my custom model?