I have a storage server where i can store many TB of the model files for raytune to pause and use.
currently it is filling up my HPC server that has a small drive. in the \AppData\Local\Temp\2 folder in windows. raytune is creating a bunch of folders named “tmpxxxxxxxx” with a model.keras file inside and a metadata files.
I am using V2.8
I am already changing the temp dir and current dir / more wondering what other paths i need to change to fix this!
ray.init(configure_logging=False,_temp_dir="Z:\\LSTM\\HYPER\\TMP")
algo = TuneBOHB()
algo = tune.search.ConcurrencyLimiter(algo, max_concurrent=1)
scheduler = HyperBandForBOHB(
time_attr="training_iteration",
max_t=6000,
stop_last_trials=False,
)
X_train, X_test,y_train,y_test = gendata_lstm.GenerateData.GenerateData(120)
data = {"X_t": X_train, "X_tt": X_test, "y_t":y_train , "y_tt": y_test}
trainable_with_resources = tune.with_resources(train_mnist, {"gpu": 2})
tuner = tune.Tuner(
tune.with_parameters(trainable_with_resources, data=data),
tune_config=tune.TuneConfig(
metric="val_loss",
mode="min",
search_alg=algo,
scheduler=scheduler,
num_samples=1000,
),
run_config=train.RunConfig(
name="LSMT_4L",
storage_path="\\\\192.168.1.107\\StorageDrive\\LSTM\\HYPER",
local_dir="\\\\192.168.1.107\\StorageDrive\\LSTM\\HYPER\\TMP",
stop={"mean_accuracy": 0.99},
),
param_space={
"lr": tune.uniform(0.000001, 0.1),
"l1": tune.randint(512, 2048),
"l2": tune.randint(512, 2048),
"l3": tune.randint(512, 2048),
"l4": tune.randint(512, 2048),
"decay": tune.uniform(1e-5, 1e-2),
},
)