How severe does this issue affect your experience of using Ray?
- High: It blocks me to complete my task.
I struggle to find working examples on PettingZooEnv.
For example, this one
gives me following error:
2022-12-12 15:50:54,850	ERROR trial_runner.py:993 -- Trial PG_RockPaperScissors_9c2e7_00000: Error processing event.
ray.tune.error._TuneNoNextExecutorEventError: Traceback (most recent call last):
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/tune/execution/ray_trial_executor.py", line 1050, in get_next_executor_event
    future_result = ray.get(ready_future)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/_private/client_mode_hook.py", line 105, in wrapper
    return func(*args, **kwargs)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/_private/worker.py", line 2291, in get
    raise value
ray.exceptions.RayActorError: The actor died because of an error raised in its creation task, ray::PG.__init__() (pid=32718, ip=192.168.31.157, repr=PG)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 414, in __init__
    super().__init__(config=config, logger_creator=logger_creator, **kwargs)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/tune/trainable/trainable.py", line 161, in __init__
    self.setup(copy.deepcopy(self.config))
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 524, in setup
    self.workers = WorkerSet(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 185, in __init__
    self._local_worker = self._make_worker(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 892, in _make_worker
    worker = cls(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 567, in __init__
    self.policy_dict = _determine_spaces_for_multi_agent_dict(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 2121, in _determine_spaces_for_multi_agent_dict
    raise ValueError(
ValueError: `observation_space` not provided in PolicySpec for default_policy and env does not have an observation space OR no spaces received from other workers' env(s) OR no `observation_space` specified in config!
2022-12-12 15:50:54,855	ERROR ray_trial_executor.py:111 -- An exception occurred when trying to stop the Ray actor:Traceback (most recent call last):
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/tune/execution/ray_trial_executor.py", line 102, in _post_stop_cleanup
    ray.get(future, timeout=timeout)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/_private/client_mode_hook.py", line 105, in wrapper
    return func(*args, **kwargs)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/_private/worker.py", line 2291, in get
    raise value
ray.exceptions.RayActorError: The actor died because of an error raised in its creation task, ray::PG.__init__() (pid=32718, ip=192.168.31.157, repr=PG)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 414, in __init__
    super().__init__(config=config, logger_creator=logger_creator, **kwargs)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/tune/trainable/trainable.py", line 161, in __init__
    self.setup(copy.deepcopy(self.config))
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 524, in setup
    self.workers = WorkerSet(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 185, in __init__
    self._local_worker = self._make_worker(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 892, in _make_worker
    worker = cls(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 567, in __init__
    self.policy_dict = _determine_spaces_for_multi_agent_dict(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 2121, in _determine_spaces_for_multi_agent_dict
    raise ValueError(
ValueError: `observation_space` not provided in PolicySpec for default_policy and env does not have an observation space OR no spaces received from other workers' env(s) OR no `observation_space` specified in config!
(PG pid=32718) 2022-12-12 15:50:54,841	INFO algorithm.py:457 -- Current log_level is WARN. For more information, set 'log_level': 'INFO' / 'DEBUG' or use the -v and -vv flags.
(PG pid=32718) 2022-12-12 15:50:54,844	WARNING env.py:51 -- Skipping env checking for this experiment
(PG pid=32718) 2022-12-12 15:50:54,846	ERROR worker.py:763 -- Exception raised in creation task: The actor died because of an error raised in its creation task, ray::PG.__init__() (pid=32718, ip=192.168.31.157, repr=PG)
(PG pid=32718)   File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 414, in __init__
(PG pid=32718)     super().__init__(config=config, logger_creator=logger_creator, **kwargs)
(PG pid=32718)   File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/tune/trainable/trainable.py", line 161, in __init__
(PG pid=32718)     self.setup(copy.deepcopy(self.config))
(PG pid=32718)   File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 524, in setup
(PG pid=32718)     self.workers = WorkerSet(
(PG pid=32718)   File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 185, in __init__
(PG pid=32718)     self._local_worker = self._make_worker(
(PG pid=32718)   File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 892, in _make_worker
(PG pid=32718)     worker = cls(
(PG pid=32718)   File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 567, in __init__
(PG pid=32718)     self.policy_dict = _determine_spaces_for_multi_agent_dict(
(PG pid=32718)   File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 2121, in _determine_spaces_for_multi_agent_dict
(PG pid=32718)     raise ValueError(
(PG pid=32718) ValueError: `observation_space` not provided in PolicySpec for default_policy and env does not have an observation space OR no spaces received from other workers' env(s) OR no `observation_space` specified in config!
2022-12-12 15:50:54,957	ERROR tune.py:773 -- Trials did not complete: [PG_RockPaperScissors_9c2e7_00000]
2022-12-12 15:50:54,958	INFO tune.py:777 -- Total run time: 2.82 seconds (2.71 seconds for the tuning loop).
2022-12-12 15:50:54,968	INFO algorithm.py:457 -- Current log_level is WARN. For more information, set 'log_level': 'INFO' / 'DEBUG' or use the -v and -vv flags.
2022-12-12 15:50:54,972	WARNING env.py:51 -- Skipping env checking for this experiment
Traceback (most recent call last):
  File "/home/student/projects/rllib/examples/rock_paper_scissors_multiagent_2.1.0.py", line 206, in <module>
    run_heuristic_vs_learned(args, use_lstm=False)
  File "/home/student/projects/rllib/examples/rock_paper_scissors_multiagent_2.1.0.py", line 130, in run_heuristic_vs_learned
    algo = cls(config=config)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 414, in __init__
    super().__init__(config=config, logger_creator=logger_creator, **kwargs)
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/tune/trainable/trainable.py", line 161, in __init__
    self.setup(copy.deepcopy(self.config))
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 524, in setup
    self.workers = WorkerSet(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 185, in __init__
    self._local_worker = self._make_worker(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 892, in _make_worker
    worker = cls(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 567, in __init__
    self.policy_dict = _determine_spaces_for_multi_agent_dict(
  File "/home/student/anaconda3/envs/rllib/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 2121, in _determine_spaces_for_multi_agent_dict
    raise ValueError(
ValueError: `observation_space` not provided in PolicySpec for always_same and env does not have an observation space OR no spaces received from other workers' env(s) OR no `observation_space` specified in config!
Actually, there is the same error for other MARL examples.
Single agent algorithms work perfectly.
