Ray Tune with the new connector and env runner stack

How severe does this issue affect your experience of using Ray?

  • Medium: It contributes to significant difficulty to complete my task, but I can work around it.
    from pettingzoo.mpe import simple_spread
    register_env("env", lambda _: ParallelPettingZooEnv(simple_spread.parallel_env()))

    # Policies are called just like the agents (exact 1:1 mapping).
    policies = {f"agent_{i}" for i in range(2)}

    base_config = (
        PPOConfig()
        .api_stack(
       # enable_env_runner_and_connector_v2=True,  ## THIS CAUSING FAILURE
            enable_rl_module_and_learner=True)
        .experimental(
            _enable_new_api_stack=True,     
        )
        .environment("env")
        .multi_agent(
            policies=policies,
            # Exact 1:1 mapping from AgentID to ModuleID.
            policy_mapping_fn=(lambda aid, *args, **kwargs: aid),
        )
        .training(
            vf_loss_coeff=0.005,
        )
        .rl_module(
            model_config_dict={"vf_share_layers": True},
            rl_module_spec=MultiAgentRLModuleSpec(
                module_specs={p: SingleAgentRLModuleSpec() for p in policies},
            ),
        )
    )
    # )
    # run the tune search
    config_dict = base_config.to_dict()
    training_function = tune.with_resources(
        training_func,
        resources=base_config.algo_class.default_resource_request(base_config),
    )

    tuner = tune.Tuner(
        training_function,
        # Pass in your config dict.
        param_space=config_dict,
    )

    tuner.fit()

Enabling the new connector API when running an experiment with Tune results in an abrupt and unexplained error. Error logs contain not of use as well.