ray.tune.error.TuneError: ('Trials did not complete', [A3C_A3C_four_way_train-v0_00000]

I got error related to ray tune when I am trying to run A3C policy. This is my code:

env_name=‘A3C_four_way_train-v0’
env = gym.make(env_name)
print (env.spec.max_episode_steps,“-±±±±±±±±±±±±±±±±±+”)
env.spec.max_episode_steps=1024
print (env.spec.max_episode_steps,“-±±±±±±±±±±±±±±±±±+”)

env_actor_configs = env.configs
num_framestack = args.num_framestack

env_config[“env”][“render”] = False

def env_creator(env_config):

import macad_gym
env = gym.make("A3C_four_way_train-v0")

# Apply wrappers to: convert to Grayscale, resize to 84 x 84,
# stack frames & some more op
env = wrap_deepmind(env, dim=84, num_framestack=num_framestack)
return env

env = wrap_deepmind(env, dim=84, num_framestack=num_framestack)

register_env(env_name, lambda config: env_creator(config))

# Placeholder to enable use of a custom pre-processor

class ImagePreproc(Preprocessor):
def _init_shape(self, obs_space, options):
self.shape = (84, 84, 3) # Adjust third dim if stacking frames
return self.shape

def transform(self, observation):
    observation = cv2.resize(observation, (self.shape[0], self.shape[1]))
    return observation

def transform(self, observation):
observation = cv2.resize(observation, (self.shape[0], self.shape[1]))
return observation

ModelCatalog.register_custom_preprocessor(“sq_im_84”, ImagePreproc)

if args.redis_address is not None:
# num_gpus (& num_cpus) must not be provided when connecting to an
# existing cluster
ray.init(redis_address=args.redis_address,lru_evict=True, log_to_driver=False)
else:
ray.init(num_gpus=args.num_gpus,lru_evict=True, log_to_driver=False)

config = {
# Model and preprocessor options.
“model”: {
“custom_model”: model_name,
“custom_options”: {
# Custom notes for the experiment
“notes”: {
“args”: vars(args)
},
},
# NOTE:Wrappers are applied by RLlib if custom_preproc is NOT specified
“custom_preprocessor”: “sq_im_84”,
“dim”: 84,
“free_log_std”: False, # if args.discrete_actions else True,
“grayscale”: True,
# conv_filters to be used with the custom CNN model.
# “conv_filters”: [[16, [4, 4], 2], [32, [3, 3], 2], [16, [3, 3], 2]]
},
# preproc_pref is ignored if custom_preproc is specified
# “preprocessor_pref”: “deepmind”,

# env_config to be passed to env_creator

"env_config": env_actor_configs

}

def default_policy():
env_actor_configs[“env”][“render”] = False

config = {
# Model and preprocessor options.
"model": {
    "custom_model": model_name,
    "custom_options": {
        # Custom notes for the experiment
        "notes": {
            "args": vars(args)
        },
    },
    # NOTE:Wrappers are applied by RLlib if custom_preproc is NOT specified
    "custom_preprocessor": "sq_im_84",
    "dim": 84,
    "free_log_std": False,  # if args.discrete_actions else True,
    "grayscale": True,
    # conv_filters to be used with the custom CNN model.
    # "conv_filters": [[16, [4, 4], 2], [32, [3, 3], 2], [16, [3, 3], 2]]
},


# Should use a critic as a baseline (otherwise don't use value baseline;
# required for using GAE).
"use_critic": True,
# If true, use the Generalized Advantage Estimator (GAE)
# with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
"use_gae": True,
# Size of rollout batch
"rollout_fragment_length": 10,
# GAE(gamma) parameter
"lambda": 1.0,
# Max global norm for each gradient calculated by worker
"grad_clip": 40.0,
"epsilon":
0.1,
# Learning rate
"lr": 0.0001,
# Learning rate schedule
"lr_schedule": None,
# Value Function Loss coefficient
"vf_loss_coeff": 0.5,
# Entropy coefficient
"entropy_coeff": 0.01,
# Min time per iteration
"min_iter_time_s": 5,
# Workers sample async. Note that this increases the effective
# rollout_fragment_length by up to 5x due to async buffering of batches.
"sample_async": True,

# Discount factor of the MDP.
"gamma": 0.9,
# Number of steps after which the episode is forced to terminate. Defaults
# to `env.spec.max_episode_steps` (if present) for Gym envs.
"horizon": 1024,
# Calculate rewards but don't reset the environment when the horizon is
# hit. This allows value estimation and RNN state to span across logical
# episodes denoted by horizon. This only has an effect if horizon != inf.
"soft_horizon": True,
# Don't set 'done' at the end of the episode. Note that you still need to
# set this if soft_horizon=True, unless your env is actually running
# forever without returning done=True.
"no_done_at_end": True,
"monitor": True,




# System params.
# Should be divisible by num_envs_per_worker
"sample_batch_size":
 args.sample_bs_per_worker,
"train_batch_size":
args.train_bs,
# "rollout_fragment_length": 128,
"num_workers":
args.num_workers,
# Number of environments to evaluate vectorwise per worker.
"num_envs_per_worker":
args.envs_per_worker,
"num_cpus_per_worker":
1,
"num_gpus_per_worker":
1,
# "eager_tracing": True,

# # Learning params.
# "grad_clip":
# 40.0,
# "clip_rewards":
# True,
# either "adam" or "rmsprop"
"opt_type":
"adam",
# "lr":
# 0.003,
"lr_schedule": [
    [0, 0.0006],
    [20000000, 0.000000000001],  # Anneal linearly to 0 from start 2 end
],
# rmsprop considered
"decay":
0.5,
"momentum":
0.0,

# # balancing the three losses
# "vf_loss_coeff":
# 0.5,  # Baseline loss scaling
# "entropy_coeff":
# -0.01,

# preproc_pref is ignored if custom_preproc is specified
# "preprocessor_pref": "deepmind",

“gamma”: 0.99,

"use_lstm": args.use_lstm,
# env_config to be passed to env_creator
"env":{
    "render": False
},
# "in_evaluation": True,
# "evaluation_num_episodes": 1,
"env_config": env_actor_configs
}






# pprint (config)
return (A3CTFPolicy, Box(0.0, 255.0, shape=(84, 84, 3)), Discrete(9),config)

pprint (args.checkpoint_path)

pprint(os.path.isfile(args.checkpoint_path))

if args.debug:
# For checkpoint loading and retraining (not used in this script)
experiment_spec = tune.Experiment(
“multi-carla/” + args.model_arch,
“A3C”,
# restore=args.checkpoint_path,
# timesteps_total is init with None (not 0) which causes issue
# stop={“timesteps_total”: args.num_steps},
stop={“timesteps_since_restore”: args.num_steps},
config=config,
# checkpoint_freq=1000, #1000
# checkpoint_at_end=True,
resources_per_trial={
“cpu”: 1,
“gpu”: 1
})

experiment_spec = tune.run_experiments({
        "MA-Inde-A3C-SUI1B2C1PCARLA": {
            "run": "A3C",
            "env": env_name,
            "stop": {
                
                "training_iteration": args.num_iters,
                "timesteps_total": args.num_steps,
                "episodes_total": 1024,
            },
            # "restore":args.checkpoint_path,   
            "config": {

                "log_level": "DEBUG",
               # "num_sgd_iter": 10,  # Enables Experience Replay
                "multiagent": {
                    "policies": {
                        id: default_policy()
                        for id in env_actor_configs["actors"].keys()
                    },
                    "policy_mapping_fn":
                    tune.function(lambda agent_id: agent_id),
                    "policies_to_train": ["car2","car3"],
                },
                "env_config": env_actor_configs,
                "num_workers": args.num_workers,
                "num_envs_per_worker": args.envs_per_worker,
                "sample_batch_size": args.sample_bs_per_worker,
                "train_batch_size": args.train_bs,
                "horizon": 512,

            },
            "checkpoint_freq": 5,
            "checkpoint_at_end": True,


        }
    })

else:

pbt = PopulationBasedTraining(
time_attr=args.num_iters,
metric ='episode_reward_mean',
mode = 'max',
# reward_attr='car2PPO/policy_reward_mean',
perturbation_interval=2,
resample_probability=0.5,
quantile_fraction=0.5,  # copy bottom % with top %
# Specifies the search space for these hyperparams
hyperparam_mutations={
    # "lambda": [0.9, 1.0],
    # "clip_param": [0.1, 0.5],
    "lr":[1e-3, 1e-5],
},
log_config=True,)
# custom_explore_fn=explore)

analysis = tune.run(
    "A3C",
    name="A3C_Four_way",
    scheduler=pbt,
    verbose=1,
    reuse_actors=True,
    # num_samples=args.num_samples,
    stop={
            # "timesteps_since_restore": args.num_steps,
            "training_iteration": args.num_iters,
            "timesteps_total": args.num_steps,
            "episodes_total": 500,},


    config= {
                "env": env_name,
                "log_level": "DEBUG",
            #    "num_sgd_iter": 4,  # Enables Experience Replay
                "multiagent": {
                    "policies": {
                        id: default_policy()
                        for id in env_actor_configs["actors"].keys()
                    },
                    "policy_mapping_fn":
                    tune.function(lambda agent_id: agent_id),
                    "policies_to_train": ["carA3C"], #car2PPO is Autonomous driving models
                },
                "env_config": env_actor_configs,
                "num_workers": args.num_workers,
                "num_envs_per_worker": args.envs_per_worker,
                "sample_batch_size": args.sample_bs_per_worker,
                "train_batch_size": args.train_bs,
                #"horizon": 512, #yet to be fixed

            },
        checkpoint_freq = 5,
        checkpoint_at_end = True,    
    )

ray.shutdown()

This is error log:

2024-07-13 04:25:08.938498: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libnvinfer.so.6’; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory
2024-07-13 04:25:08.938568: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libnvinfer_plugin.so.6’; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory
2024-07-13 04:25:08.938577: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
None -±±±±±±±±±±±±±±±±±+
1024 -±±±±±±±±±±±±±±±±±+
2024-07-13 04:25:09,896 INFO resource_spec.py:212 – Starting Ray with 13.48 GiB memory available for workers and up to 6.74 GiB for objects. You can adjust these settings with ray.init(memory=, object_store_memory=).
2024-07-13 04:25:10,257 INFO services.py:1148 – View the Ray dashboard at localhost:8267
2024-07-13 04:25:10,386 WARNING sample.py:27 – DeprecationWarning: wrapping <function at 0x7f23fb88dd08> with tune.function() is no longer needed
2024-07-13 04:25:10,519 ERROR trial_executor.py:64 – Trial A3C_A3C_four_way_train-v0_00000: Error checkpointing trial metadata.
Traceback (most recent call last):
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/tune/trial_executor.py”, line 61, in try_checkpoint_metadata
self._cached_trial_state[trial.trial_id] = trial.getstate()
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/tune/trial.py”, line 551, in getstate
self.result_logger.flush(sync_down=False)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/tune/logger.py”, line 330, in flush
_logger.flush()
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/tune/logger.py”, line 237, in flush
self._file_writer.flush()
AttributeError: ‘SummaryWriter’ object has no attribute ‘flush’
== Status ==
Memory usage on this node: 9.8/31.2 GiB
PopulationBasedTraining: 0 checkpoints, 0 perturbs
Resources requested: 3/16 CPUs, 0/1 GPUs, 0.0/13.48 GiB heap, 0.0/4.64 GiB objects
Result logdir: /home/ray_results/A3C_Four_way
Number of trials: 1 (1 RUNNING)
±--------------------------------±---------±------+
| Trial name | status | loc |
|---------------------------------±---------±------|
| A3C_A3C_four_way_train-v0_00000 | RUNNING | |
±--------------------------------±---------±------+

2024-07-13 04:35:16,915 ERROR trial_runner.py:521 – Trial A3C_A3C_four_way_train-v0_00000: Error processing event.
Traceback (most recent call last):
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/tune/trial_runner.py”, line 467, in _process_trial
result = self.trial_executor.fetch_result(trial)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/tune/ray_trial_executor.py”, line 381, in fetch_result
result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/worker.py”, line 1513, in get
raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(Empty): ray::A3C.train() (pid=28802, ip=192.168.15.93)
File “python/ray/_raylet.pyx”, line 452, in ray._raylet.execute_task
File “python/ray/_raylet.pyx”, line 407, in ray._raylet.execute_task.function_executor
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/agents/trainer.py”, line 502, in train
raise e
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/agents/trainer.py”, line 491, in train
result = Trainable.train(self)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/tune/trainable.py”, line 261, in train
result = self._train()
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/agents/trainer_template.py”, line 142, in _train
return self._train_exec_impl()
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/agents/trainer_template.py”, line 174, in _train_exec_impl
res = next(self.train_exec_impl)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 634, in next
return next(self.built_iterator)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 644, in apply_foreach
for item in it:
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 685, in apply_filter
for item in it:
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 644, in apply_foreach
for item in it:
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 670, in add_wait_hooks
item = next(it)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 644, in apply_foreach
for item in it:
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 470, in base_iterator
yield ray.get(obj_id)
ray.exceptions.RayTaskError(Empty): ray::RolloutWorker.par_iter_next() (pid=28805, ip=192.168.15.93)
File “python/ray/_raylet.pyx”, line 452, in ray._raylet.execute_task
File “python/ray/_raylet.pyx”, line 407, in ray._raylet.execute_task.function_executor
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 961, in par_iter_next
return next(self.local_it)
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/util/iter.py”, line 644, in apply_foreach
for item in it:
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/evaluation/rollout_worker.py”, line 251, in gen_rollouts
yield self.sample()
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/evaluation/rollout_worker.py”, line 492, in sample
batches = [self.input_reader.next()]
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/evaluation/sampler.py”, line 53, in next
batches = [self.get_data()]
File “/home/miniconda3/envs/newbench/lib/python3.6/site-packages/ray/rllib/evaluation/sampler.py”, line 199, in get_data
rollout = self.queue.get(timeout=600.0)
File “/home/miniconda3/envs/newbench/lib/python3.6/queue.py”, line 172, in get
raise Empty
queue.Empty
== Status ==
Memory usage on this node: 11.6/31.2 GiB
PopulationBasedTraining: 0 checkpoints, 0 perturbs
Resources requested: 0/16 CPUs, 0/1 GPUs, 0.0/13.48 GiB heap, 0.0/4.64 GiB objects
Result logdir: /home/ray_results/A3C_Four_way
Number of trials: 1 (1 ERROR)

How to solve this?