How severe does this issue affect your experience of using Ray?
- High: It blocks me to complete my task.
After restoring an experiment, Ray trains the restored trial using CPU and ignores GPU.`def BayesOptimization(self):
storage_path = os.path.join(RayTuner_CONFIG.RESULTS_FOLDER, f'RayTune_{args.data_mode}_{str(args.data_number_of_samples)}_{self.classes}')
experiment_dir = os.path.join(storage_path, RayTuner_CONFIG.RAY_EXPERIMENT_NAME)
algo = BayesOptSearch(
metric = self.metric,
mode = self.algo_mode
)
if tune.Tuner.can_restore(experiment_dir):
tuner = tune.Tuner.restore(
experiment_dir,
trainable=self.model,
resume_unfinished=True,
resume_errored=True,
restart_errored=False,
param_space=self.hyperParams
)
print(f"\nRestoring experiment from: {experiment_dir}\n")
else:
tuner = tune.Tuner(
tune.with_resources(
tune.with_parameters(self.model),
resources={"cpu": self.cpuFrac, "gpu": self.gpuFrac}
),
tune_config=tune.TuneConfig(
search_alg=algo,
num_samples=self.analysis_numberOfsamples,
),
param_space=self.hyperParams,
run_config=RunConfig(
name=RayTuner_CONFIG.RAY_EXPERIMENT_NAME,
progress_reporter = self.reporter,
storage_path=storage_path,
local_dir=storage_path,
stop=TrialPlateauStopper(
metric=self.metric,
mode=self.algo_mode,
std=0.0001,
num_results=10,
grace_period=50
),
checkpoint_config=train.CheckpointConfig(
num_to_keep=1,
checkpoint_score_attribute=self.metric,
checkpoint_score_order=self.algo_mode
)
)
)
results = tuner.fit()
return results
Is there any way to tell Ray to use GPU after restoration?
Thanks