Ray not detecting my GPU. Any clue what I should do?
$ nvidia-smi -L
GPU 0: NVIDIA GeForce GTX 1650 (UUID: GPU-9a194227-e6e5-7574-70df-22dbe4657f08)
>>> torch.cuda.is_available()
True
>>> torch.version.cuda
'11.1'
Traceback (most recent call last):
File "simple_graph_heuristic_gnn.py", line 829, in <module>
analysis = tune.run(
File "/home/genesis/miniconda3/envs/gt/lib/python3.8/site-packages/ray/tune/tune.py", line 585, in run
runner.step()
File "/home/genesis/miniconda3/envs/gt/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 627, in step
self._run_and_catch(self.trial_executor.on_no_available_trials)
File "/home/genesis/miniconda3/envs/gt/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 394, in _run_and_catch
func(self.get_trials())
File "/home/genesis/miniconda3/envs/gt/lib/python3.8/site-packages/ray/tune/trial_executor.py", line 321, in on_no_available_trials
self._may_warn_insufficient_resources(trials)
File "/home/genesis/miniconda3/envs/gt/lib/python3.8/site-packages/ray/tune/trial_executor.py", line 301, in _may_warn_insufficient_resources
raise TuneError(
ray.tune.error.TuneError: You asked for 3.0 cpu and 1.0 gpu per trial, but the cluster only has 12.0 cpu and 0 gpu. Stop the tuning job and adjust the resources requested per trial (possibly via `resources_per_trial` or via `num_workers` for rllib) and/or add more resources to your Ray runtime.