I get this error with maddpg :
File "*/lib/python3.7/site-packages/ray/tune/function_runner.py", line 248, in run
self._entrypoint()
File "*/lib/python3.7/site-packages/ray/tune/function_runner.py", line 316, in entrypoint
self._status_reporter.get_checkpoint())
File "*/lib/python3.7/site-packages/ray/tune/function_runner.py", line 580, in _trainable_func
output = fn()
File "*/lib/python3.7/site-packages/rlfw/train/run_utils.py", line 126, in run_xp
latest_result = trainer.train()
File "*/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 576, in train
raise e
File "*/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 562, in train
result = Trainable.train(self)
File "*/lib/python3.7/site-packages/ray/tune/trainable.py", line 232, in train
result = self.step()
File "*/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 171, in step
evaluation_metrics = self._evaluate()
File "*/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 807, in _evaluate
self._sync_weights_to_workers(worker_set=self.evaluation_workers)
File "*lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 860, in _sync_weights_to_workers
worker_set.foreach_worker(lambda w: w.restore(ray.get(weights)))
File "*/lib/python3.7/site-packages/ray/rllib/evaluation/worker_set.py", line 160, in foreach_worker
local_result = [func(self.local_worker())]
File "*/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 860, in <lambda>
worker_set.foreach_worker(lambda w: w.restore(ray.get(weights)))
File "*/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 1061, in restore
self.policy_map[pid].set_state(state)
File "*lib/python3.7/site-packages/ray/rllib/contrib/maddpg/maddpg_policy.py", line 313, in set_state
TFPolicy.set_state(self, state)
File "*/lib/python3.7/site-packages/ray/rllib/policy/tf_policy.py", line 489, in set_state
optimizer_vars = state.pop("_optimizer_variables", None)
TypeError: pop() takes at most 1 argument (2 given)
Have you ever encountered this ? state here is a list of all my weights instead of a dict.