I am converting pdf to html file and then following the process of chunking and storing. How can i integrate ray here to scale this application for my use case with direct pdf as an input?
Needed help in code!
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, AutoModelForCausalLM
from langchain import HuggingFacePipeline
from langchain.vectorstores import FAISS
db = FAISS.from_documents(chunks, huggingface_embeddings)
question = " In Q2, what is the revenue growth of ethnic-wear brands?"
searchDocs = db.similarity_search(question)
print(searchDocs[0])
tokenizer = AutoTokenizer.from_pretrained(“google/flan-t5-large”)
model = AutoModelForSeq2SeqLM.from_pretrained(“google/flan-t5-large”)
pipe = pipeline(“text2text-generation”, model=model, tokenizer=tokenizer)
llm = HuggingFacePipeline(
pipeline = pipe,
model_kwargs={“temperature”: 0, “max_length”: 1024},
)
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type=“stuff”,
retriever=db.as_retriever(),
chain_type_kwargs={“prompt”: QA_CHAIN_PROMPT}
)
result = qa_chain ({ “query” : question })
print(result[“result”])