Behavioural Cloning Algo

Hi!
I am tryining to use the Behavioural Cloning algorithm with a custom environment as you can see here:

from gym_jsbsim.environments.environment import GuidanceEnvContinuos
import ray
from gym_jsbsim.wrappers.normalise_observation import NormalizeObservation
from ray.rllib.agents.ddpg import TD3Trainer, td3
from ray.tune import register_env
import datetime
import os
from ray import tune
from gym_jsbsim.aircraft import Aircraft, cessna172P
from ray.rllib.agents.marwil.bc import BCTrainer, BC_DEFAULT_CONFIG
from gym_jsbsim.tests.CustomCallbacks import CustomCallbacks
dir_path = os.path.dirname(os.path.realpath(__file__))

def env_creator(config=None):
    return GuidanceEnvContinuos(config)

def my_train_fn(config, reporter):
    agent = TD3Trainer(config=config, env="guidance-continuous-v0")
    for i in range(100):
        agent.train()
    agent.stop()

if __name__ == "__main__":
    ray.init()

    default_config = BC_DEFAULT_CONFIG

    custom_config = {
        "framework": "torch",
        "model": {
            "vf_share_layers": False,
            "fcnet_hiddens": [32, 16]
        },
        "input": f"{dir_path}/out.json",
        "replay_buffer_size": 100,
        "env_config": {
             # some env config
        },
    }

    config = {**default_config, **custom_config}
    register_env("guidance-continuous-v0", lambda config: env_creator(config))
    resources = BCTrainer.default_resource_request(config).to_json()

    # start training
    tune.run(my_train_fn,
             name="bc",
             resources_per_trial=resources,
             config=config)

However, I do get the following error:

(pid=28265) 2021-05-19 22:08:49,574     ERROR function_runner.py:254 -- Runner Thread raised     error.
(pid=28265) Traceback (most recent call last):
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 248, in run
(pid=28265)     self._entrypoint()
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 316, in entrypoint
(pid=28265)     self._status_reporter.get_checkpoint())
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 576, in _trainable_func
(pid=28265)     output = fn()
(pid=28265)   File "bc.py", line 29, in my_train_fn
(pid=28265)     result = agent.train()
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 529, in train
(pid=28265)     raise e
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 515, in train
(pid=28265)     result = Trainable.train(self)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/trainable.py", line 226, in train
(pid=28265)     result = self.step()
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 148, in step
(pid=28265)     res = next(self.train_exec_impl)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 756, in __next__
(pid=28265)     return next(self.built_iterator)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 1075, in build_union
(pid=28265)     item = next(it)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 756, in __next__
(pid=28265)     return next(self.built_iterator)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 791, in apply_foreach
(pid=28265)     result = fn(item)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/execution/train_ops.py", line 69, in __call__
(pid=28265)     info = self.workers.local_worker().learn_on_batch(batch)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 860, in learn_on_batch
(pid=28265)     .learn_on_batch(samples)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/threading.py", line 21, in wrapper
(pid=28265)     return func(self, *a, **k)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 359, in learn_on_batch
(pid=28265)     grads, fetches = self.compute_gradients(postprocessed_batch)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/threading.py", line 21, in wrapper
(pid=28265)     return func(self, *a, **k)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 391, in compute_gradients
(pid=28265)     self._loss(self, self.model, self.dist_class, train_batch))
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/marwil/marwil_torch_policy.py", line 48, in marwil_loss
(pid=28265)     advantages = train_batch[Postprocessing.ADVANTAGES]
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/tracking_dict.py", line 35, in __getitem__
(pid=28265)     value = dict.__getitem__(self, key)
(pid=28265) KeyError: 'advantages'
(pid=28265) Exception in thread Thread-2:
(pid=28265) Traceback (most recent call last):
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/threading.py", line 917, in _bootstrap_inner
(pid=28265)     self.run()
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 267, in run
(pid=28265)     raise e
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 248, in run
(pid=28265)     self._entrypoint()
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 316, in entrypoint
(pid=28265)     self._status_reporter.get_checkpoint())
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 576, in _trainable_func
(pid=28265)     output = fn()
(pid=28265)   File "bc.py", line 29, in my_train_fn
(pid=28265)     result = agent.train()
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 529, in train
(pid=28265)     raise e
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 515, in train
(pid=28265)     result = Trainable.train(self)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/trainable.py", line 226, in train
(pid=28265)     result = self.step()
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 148, in step
(pid=28265)     res = next(self.train_exec_impl)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 756, in __next__
(pid=28265)     return next(self.built_iterator)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 1075, in build_union
(pid=28265)     item = next(it)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 756, in __next__
(pid=28265)     return next(self.built_iterator)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
(pid=28265)     for item in it:
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 791, in apply_foreach
(pid=28265)     result = fn(item)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/execution/train_ops.py", line 69, in __call__
(pid=28265)     info = self.workers.local_worker().learn_on_batch(batch)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 860, in learn_on_batch
(pid=28265)     .learn_on_batch(samples)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/threading.py", line 21, in wrapper
(pid=28265)     return func(self, *a, **k)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 359, in learn_on_batch
(pid=28265)     grads, fetches = self.compute_gradients(postprocessed_batch)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/threading.py", line 21, in wrapper
(pid=28265)     return func(self, *a, **k)
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 391, in compute_gradients
(pid=28265)     self._loss(self, self.model, self.dist_class, train_batch))
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/marwil/marwil_torch_policy.py", line 48, in marwil_loss
(pid=28265)     advantages = train_batch[Postprocessing.ADVANTAGES]
(pid=28265)   File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/tracking_dict.py", line 35, in __getitem__
(pid=28265)     value = dict.__getitem__(self, key)
(pid=28265) KeyError: 'advantages'
(pid=28265) 
2021-05-19 22:08:49,738 ERROR trial_runner.py:616 -- Trial my_train_fn_None_0341f_00000: Error processing event.
Traceback (most recent call last):
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/trial_runner.py", line 586, in _process_trial
    results = self.trial_executor.fetch_result(trial)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/ray_trial_executor.py", line 609, in fetch_result
    result = ray.get(trial_future[0], timeout=DEFAULT_GET_TIMEOUT)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/_private/client_mode_hook.py", line 47, in wrapper
    return func(*args, **kwargs)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/worker.py", line 1456, in get
    raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(TuneError): ray::ImplicitFunc.train_buffered() (pid=28265, ip=192.168.1.238)
  File "python/ray/_raylet.pyx", line 480, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/trainable.py", line 167, in train_buffered
    result = self.train()
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/trainable.py", line 226, in train
    result = self.step()
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 366, in step
    self._report_thread_runner_error(block=True)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 513, in _report_thread_runner_error
    ("Trial raised an exception. Traceback:\n{}".format(err_tb_str)
ray.tune.error.TuneError: Trial raised an exception. Traceback:
ray::ImplicitFunc.train_buffered() (pid=28265, ip=192.168.1.238)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 248, in run
    self._entrypoint()
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 316, in entrypoint
    self._status_reporter.get_checkpoint())
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/function_runner.py", line 576, in _trainable_func
    output = fn()
  File "bc.py", line 29, in my_train_fn
    result = agent.train()
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 529, in train
    raise e
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 515, in train
    result = Trainable.train(self)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/tune/trainable.py", line 226, in train
    result = self.step()
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 148, in step
    res = next(self.train_exec_impl)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 756, in __next__
    return next(self.built_iterator)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
    for item in it:
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
    for item in it:
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
    for item in it:
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
    for item in it:
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 843, in apply_filter
    for item in it:
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 1075, in build_union
    item = next(it)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 756, in __next__
    return next(self.built_iterator)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 783, in apply_foreach
    for item in it:
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/util/iter.py", line 791, in apply_foreach
    result = fn(item)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/execution/train_ops.py", line 69, in __call__
    info = self.workers.local_worker().learn_on_batch(batch)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 860, in learn_on_batch
    .learn_on_batch(samples)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/threading.py", line 21, in wrapper
    return func(self, *a, **k)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 359, in learn_on_batch
    grads, fetches = self.compute_gradients(postprocessed_batch)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/threading.py", line 21, in wrapper
    return func(self, *a, **k)
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 391, in compute_gradients
    self._loss(self, self.model, self.dist_class, train_batch))
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/agents/marwil/marwil_torch_policy.py", line 48, in marwil_loss
    advantages = train_batch[Postprocessing.ADVANTAGES]
  File "/Users/walter/.pyenv/versions/3.7.0/lib/python3.7/site-packages/ray/rllib/utils/tracking_dict.py", line 35, in __getitem__
    value = dict.__getitem__(self, key)
KeyError: 'advantages'
Result for my_train_fn_None_0341f_00000:

My json file which I’ve generated manually looks like this (shortened of course)

{
  "type": "SampleBatch", 
  "action_logp": [0.0, 0.0, 0.0, ...],  # What is action_logp by the way? And is 0 for all okay?
  "actions": [[-1.0, -1.0], [-1.0, -1.0], [-1.0, -1.0], ...], 
  "obs": "BCJNGGhAzZUAAAAAAADsH4kAAGGABZXClQABAPMZjBJudW1weS..., ...", 
  "rewards": [-2.5538009330660003, -2.555342497778234, -2.5568629691827502, ...], 
  "dones": [false, false, false, ...], 
  "infos": ['is_heading_correct': True, 'is_aircraft_altitude_to_low': False, "test": True, ...], 
  "eps_id": [0, 0, 0, ...]
}

to create the SampleBatch I collected all actions, observations etc. from my expert and did something like this:

...
samples = SampleBatch({
    "action_logp": np.zeros(len(actions)),
    "actions": np.array(actions),
    "obs": np.array(observations),
    "new_obs": np.array(new_observations),
    "rewards": np.array(rewards),
    "dones": np.array(dones),
    "infos": np.array(infos).astype(str),
    "eps_id": eps_ids,
    "t": np.array(ts)
})

writer.write(samples)

Any idea what I’m missing?

Hi @Lauritowal,

This is a bug. Will you file an issue in github please.

For a temporary fix you can set postprocess_inputs" to True in your local config.

If you do not want to learn a value function you can set "vf_coeff" to 0.0 as well.

2 Likes

@mannyv alright I will do that. Thanks!

Just a quick maybe slightly related question… Does my manually created sample batch above has all the data needed for the use with the algorithms? And what is action_logp exactly? I’ve set it for every step to 0…

It looks good to me. The issue you ran into is that it is missing the advantages key which for marwil is just the cumulative discounted rewards. Marwil will calculate that automatically if “postprocess_inputs” is True but the BC configuration turns it off. The error arises because even though it turns the postprocessing off it is still trying to use the key that it would have created.

The actions_logp is the log probability of the action that was selected. Looking at your actions here are they MultiDiscrete and that is why there are 2 values for each action? Anyway I think 0 is fine here. This means that the probability for each action your expert selected is 1. This is probably not actually true but if it is a person then you also don’t have access to the real value locked in their brain. I do not think this value is used in your case. Marwil only uses it for the offline estimators which are turned off in the BC configuration.

2 Likes

@mannyv thanks for your anwer. Yeah the actions consists of two values. That’s correct.
The expert is actually another trained rllib td3 agent.
How would I get the actions_logp for each step in that case? Or does it not matter since you said it is actually not used for training the BC?

I am trying to do pretrain my agent somehow like here:

Ouch, great catch @Lauritowal and @mannyv ! I just noticed that our BC test uses a file, in which “advantages” already exist, which is why we never caught this :frowning:
This would IMO completely break the pure BC right now. MARWIL with beta set to 0.0 would still work, though. I’ll provide a fix …

1 Like